Generalized monotone triangles – an extended combinatorial reciprocity theorem

نویسنده

  • Lukas Riegler
چکیده

In a recent work, the combinatorial interpretation of the polynomial α(n; k1, k2, . . . , kn) counting the number of Monotone Triangles with bottom row k1 < k2 < · · · < kn was extended to weakly decreasing sequences k1 ≥ k2 ≥ · · · ≥ kn. In this case the evaluation of the polynomial is equal to a signed enumeration of objects called Decreasing Monotone Triangles. In this paper we define Generalized Monotone Triangles – a joint generalization of both ordinary Monotone Triangles and Decreasing Monotone Triangles. As main result of the paper we prove that the evaluation of α(n; k1, k2, . . . , kn) at arbitrary (k1, k2, . . . , kn) ∈ Z is a signed enumeration of Generalized Monotone Triangles with bottom row (k1, k2, . . . , kn). Computational experiments indicate that certain evaluations of the polynomial at integral sequences yield well-known round numbers related to Alternating Sign Matrices. The main result provides a combinatorial interpretation of the conjectured identities and could turn out useful in giving bijective proofs. Résumé. Dans un travail récent, l’interprétation combinatoire du polynôme α(n; k1, k2, . . . , kn) comptant le nombre de triangles monotones avec dernière ligne k1 < k2 < · · · < kn a été étendue aux suites faiblement décroissantes k1 ≥ k2 ≥ · · · ≥ kn. Dans ce cas l’évaluation du polynôme est égale à l’énumération signée d’objets appelés triangles monotones décroissants. Dans ce papier nous définissons des triangles monotones généralisés – une généralisation commune des triangles monotones ordinaires et décroissants. Notre résultat principal est que l’évaluation de α(n; k1, k2, . . . , kn) en un quelconque (k1, k2, . . . , kn) ∈ Z est une énumération signée de triangles monotones généralisés avec dernière ligne (k1, k2, . . . , kn). Des calculs par ordinateur indiquent que certaines valeurs du polynôme sont des nombres bien connus liés aux matrices à signe alternant. Le résultat principal fournit une interprétation combinatoire des identités conjecturales et pourrait être utile dans l’obtention de preuves bijectives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial reciprocity for Monotone Triangles

The number of Monotone Triangles with bottom row k1 < k2 < · · · < kn is given by a polynomial α(n; k1, . . . , kn) in n variables. The evaluation of this polynomial at weakly decreasing sequences k1 ≥ k2 ≥ · · · ≥ kn turns out to be interpretable as signed enumeration of new combinatorial objects called Decreasing Monotone Triangles. There exist surprising connections between the two classes o...

متن کامل

GENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS

A general notion of completely monotone functionals on an ordered Banach algebra B into a proper H*-algebra A with an integral representation for such functionals is given. As an application of this result we have obtained a characterization for the generalized completely continuous monotone functions on weighted foundation semigroups. A generalized version of Bochner’s theorem on foundation se...

متن کامل

5 Conclusions and Open Problems 4.4 an Algorithm with Subquadratic Overhead

A singly-exponential stratiication scheme for real semi-algebraic varieties and its applications. 28 If we stop because of (i), this means that throughout the way z + (y) and z ? (y) are visible to one another, and therefore the face is y-monotone. If we stop because z + (y) and z ? (y) stop seeing one another, then it must be the case that the intrusion is due to the left endpoint of a curve o...

متن کامل

Constant Term Formulas for Refined Enumerations of Gog and Magog Trapezoids

Gog and Magog trapezoids are certain arrays of positive integers that generalize alternating sign matrices (ASMs) and totally symmetric self-complementary plane partitions (TSSCPPs) respectively. Zeilberger used constant term formulas to prove that there is the same number of (n, k)-Gog trapezoids as there is of (n, k)-Magog trapezoids, thereby providing so far the only proof for a weak version...

متن کامل

Clustering in Large Networks Does Not Promote Upstream Reciprocity

Upstream reciprocity (also called generalized reciprocity) is a putative mechanism for cooperation in social dilemma situations with which players help others when they are helped by somebody else. It is a type of indirect reciprocity. Although upstream reciprocity is often observed in experiments, most theories suggest that it is operative only when players form short cycles such as triangles,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013